Student's Name:

Student Number

ber:					

Teacher's Name:

ABBOTSLEIGH

2023

HIGHER SCHOOL CERTIFICATE Assessment 4

Trial Examination

Mathematics Extension 1

General Instructions

- Reading time 10 minutes
- Working time 2 hours
- Write using black pen.
- **NESA approved** calculators may be used.
- **NESA approved** reference sheet is provided.
- All necessary working should be shown in every question.
- Write your NESA number on each page.
- Start a new page for each of Questions 11 14.
- Answer the Multiple Choice questions on the answer sheet provided.
- If you do not attempt a whole question, you must write the question number at the top of a blank page with your NESA number and the words 'NOT ATTEMPTED' written clearly on it.

Total marks - 70

• Attempt Sections I and II.

Section I

) Pages 3 - 7

10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section.

Section II) Pages 8-16

60 marks

- Attempt Questions 11 14.
- Allow about 1 hour and 45 minutes for this section.
- All questions are of equal value.

Outcomes to be assessed:

Year 11 Mathematics Extension 1 outcomes

A student:

ME11-1

uses algebraic and graphical concepts in the modelling and solving of problems involving functions and their inverses

ME11-2

manipulates algebraic expressions and graphical functions to solve problems

ME11-3

applies concepts and techniques of inverse trigonometric functions and simplifying expressions involving compound angles in the solution of problems

ME11-4

applies understanding of the concept of a derivative in the solution of problems, including rates of change, exponential growth and decay and related rates of change

ME11-5

uses concepts of permutations and combinations to solve problems involving counting or ordering

ME11-7

communicates making comprehensive use of mathematical language, notation, diagrams and graphs

Year 12 Mathematics Extension 1 outcomes

A student:

ME12-1

applies techniques involving proof or calculus to model and solve problems

ME12-2

applies concepts and techniques involving vectors and projectiles to solve problems

ME12-3

applies advanced concepts and techniques in simplifying expressions involving compound angles and solving trigonometric equations

ME12-4

uses calculus in the solution of applied problems, including differential equations and volumes of solids of revolution

ME12-7

evaluates and justifies conclusions, communicating a position clearly in appropriate mathematical forms

SECTION I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section Use the multiple-choice answer sheet for Questions 1 - 10

- 1. Given $f(x) = \sqrt{x} 3$, what are the domain and range of $f^{-1}(x)$?
 - (A) $x \ge -3, y \ge 0$
 - (B) $x \ge -3, y \ge -3$
 - (C) $x \ge 0, y \ge 0$
 - (D) $x \ge 0, y \ge -3$

2. Given
$$\tan \theta = \frac{1}{3}$$
, what is the exact value of $\tan \left(\theta + \frac{\pi}{3} \right)$?

(A)
$$\frac{\sqrt{3}+3}{3\sqrt{3}-1}$$

(B) $\frac{\sqrt{3}-3}{3\sqrt{3}+1}$

(C)
$$\frac{1+3\sqrt{3}}{3-\sqrt{3}}$$

(D)
$$\frac{1-3\sqrt{3}}{3+\sqrt{3}}$$

3. What is the domain and range of the function $y = 6\sin^{-1}(3x)$?

(A) Domain
$$\left[-\frac{1}{3},\frac{1}{3}\right]$$
; Range $\left[-6\pi,6\pi\right]$.

(B) Domain
$$\left[-\frac{1}{3},\frac{1}{3}\right]$$
; Range $\left[-3\pi,3\pi\right]$.

(C) Domain
$$\left[-\frac{1}{3}, \frac{1}{3}\right]$$
; Range $\left[0, 6\pi\right]$.

(D) Domain
$$\left[-\frac{1}{3}, \frac{1}{3}\right]$$
; Range $\left[0, 3\pi\right]$.

4. Layla projects an arrow at an angle of 45° to the horizontal with an initial velocity of 50 ms⁻¹. What is the horizontal speed of the arrow?

(A)
$$\sqrt{2} \text{ ms}^{-1}$$

(B)
$$50\sqrt{2} \text{ ms}^{-1}$$

(C)
$$\frac{1}{\sqrt{2}}$$
 ms⁻¹

(D)
$$\frac{50}{\sqrt{2}} \,\mathrm{ms}^{-1}$$

5. The direction (slope) field for the differential equation $\frac{dy}{dx} + x + y = 0$ is shown below.

Which point satisfies the solution to the differential equation that includes (0, -1)?

- (A) (-1.5, -2)
- (B) (2.5,-1)
- (C) (3, -1)
- (D) (3.5, -2.5)

- 6. Which of the following is the solution set of the inequation $\frac{2}{|x-1|} \le 3$?
 - (A) $x < 1 \text{ and } x \ge \frac{5}{3}$. (B) $1 < x \le \frac{5}{3}$. (C) $x \le \frac{1}{3} \text{ and } x \ge \frac{5}{3}$. (D) $\frac{1}{3} \le x \le \frac{5}{3}$.
- 7. What are the values of p for which $y = e^{px}$ satisfies the differential equation

$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 12y = 0?$$

(A) p = -4, p = 3

(B)
$$p = -3, p = 4$$

- (C) $p = \pm 3$
- (D) $p = \pm 4$
- 8. In a Year 12 Mathematics class, the teacher can give one of 5 grades (A, B, C, D or E) to each student. What is the minimum number of students required so that six students are guaranteed to receive the same grade?
 - (A) 6
 - (B) 25
 - (C) 26
 - (D) 30

- 9. In how many different ways can three girls and three boys be seated on a bench for a photograph if the girls must sit apart?
 - (A) 72
 - (B) 120
 - (C) 144
 - (D) 576
- 10. Which of the following is equal to $\int_{-1}^{1} \cos^{-1} x \, dx$?
 - (A) $\frac{\pi}{3}$
 - (B) $\frac{\pi}{2}$
 - (C) *π*
 - (D) 2π

End of Section I

SECTION II

60 marks

Attempt Questions 11 – 14

Allow about 1 hour and 45 minutes for this section

Answer each question in a **SEPARATE** writing booklet. Extra writing booklets are available.

In Questions 11-14 your responses should include relevant mathematical reasoning and/or calculations. Marks

Question 11 (15 marks)

(a) The polynomial $P(x) = 8x^4 - 38x^3 + 9x^2 + ax + b$ has a double root at x = 3. **3**

Find the value of *a* and *b*, where *a* and *b* are real numbers.

(b) Find the exact value of
$$\int_{\sqrt{2}}^{\sqrt{3}} \frac{1}{\sqrt{4-x^2}} dx.$$
 2

(c) Consider the expansion of $(2x - p)^9$. The coefficient of the term in x^6 is $-672\ 000$. 2 Find the value of p.

Question 11 continues on next page

3

(d) (i) Write the expression
$$2\sqrt{3}\sin x + 2\cos x$$
 in the form $R\sin(x+\alpha)$, 2
where $R > 0$ and $0 \le \alpha \le \frac{\pi}{2}$.

(ii) Hence find the value of k, where $0 \le k \le 2\pi$, for which

$$\int_{0}^{k} (2\sqrt{3}\cos x - 2\sin x) \, dx = 2.$$

(e) Consider the function $f(x) = x^2 - c^2$, where c is a positive real number.

Sketch the graph of $y = \frac{1}{|f(x)|}$, showing all important features including the turning point(s), intercept(s) and asymptote(s).

End of Question 11

(a) Find
$$\int \frac{\cos^2(\ln x)}{x} dx$$
 using the substitution $u = \ln x$.

(b) Rylie has a boat which moves at a top speed of 12 ms^{-1} in still water.

From point R, he wants to go due north to point D on the opposite side of the river, as shown in the diagram below.

Today the current in the river is flowing at 5 ms⁻¹. From *R*, he steers the boat due north toward *D* at top speed. Due to the current he drifts down the river and arrives at point *E*.

(i)	Taking <i>R</i> as the origin, write down Rylie's velocity vector in the form $x_{\tilde{i}} + y_{\tilde{j}}$ and find the magnitude of this vector.	2
(ii)	What is the bearing of Rylie's velocity vector and how far does he travel from <i>R</i> to <i>E</i> ?	2
(iii)	On what bearing should Rylie have pointed the boat, so that he arrived at <i>D</i> , with the boat travelling at top speed?	2

Question 12 continues on next page

3

(c) (i) Show that
$$\frac{1}{(n+1)!} - \frac{n+1}{(n+2)!} = \frac{1}{(n+2)!}$$
 1

(ii) Use mathematical induction to show that, for all integers
$$n \ge 1$$
, **3**

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}.$$

(d) The roots of $x^3 + 4x^2 - 5x + 3 = 0$ are α , β , and γ .

Find the value of $\frac{1}{\alpha\beta} + \frac{1}{\alpha\gamma} + \frac{1}{\beta\gamma}$.

End of Question 12

(a) A rocket is fired with a velocity $V \text{ ms}^{-1}$ at an angle θ to the horizontal from sea level and hits a cliff face as shown. Neglect air resistance and take $g = 10 \text{ ms}^{-2}$.

(i) If $V = 180 \text{ ms}^{-1}$ and $\theta = 60^{\circ}$, show that at any time *t* seconds, the position **2** vector of the rocket relative to the point at which it was fired is

$$\underline{s}(t) = 90t\underline{i} + \left(90\sqrt{3}t - 5t^2\right)\underline{j}$$

- (ii) Find the maximum height reached by the rocket.
- (iii) The base of the cliff is 270 m from the point at which the rocket was fired. 2 Find the value of h.

Question 13 continues on next page

(b) The diagram below shows the lines *AB* and *CD*. The line *AB* passes through the Points (2, -4) and (-4, 7) and the line *CD* passes through (-6, -7) and (12, 10).

Use vector methods to find the acute angle between the two lines.

Write your answer to the nearest degree.

(c) The proportion, *P*, of people who know a rumour is modelled by the differential equation $\frac{dP}{dt} = 2P(1-P)$ where *t* is the time in weeks. Initially only 10% of people know the rumour.

(i) Show that
$$\frac{1}{P} + \frac{1}{1-P} = \frac{1}{P(1-P)}$$
. 1

(iii) Hence, find the exact time taken for half of the people to know the rumour. 2

End of Question 13

(a) Find a cartesian equation for the following pair of parametric equations:

$$x = 5\sin\theta$$
$$y = 5\cos\theta + 1$$

(b) Let
$$f(x) = \sqrt{m-3x}$$
 for $x \le \frac{m}{3}$. The graph of $f(x)$ is shown below.

The area enclosed by the graph f(x), the x-axis and the y-axis is rotated about the y-axis. Find the value of m such that the volume of the solid formed is $\frac{5000\pi}{27}$ units³.

Question 14 continues on next page

2

4

- (c) The velocity of a particle moving in a straight line is given by $\dot{x} = e^x + e^{-x}$, where *x* in metres is the displacement from the origin. Initially the particle is at the origin.
 - (i) Show that the time taken by the particle as a function of its displacement is given by

$$t = \int \frac{e^x}{e^{2x} + 1} \, dx.$$

(ii) Hence, by using the substitution $u = e^x$, prove that.

$$x = \ln\left(\tan\left(t + \frac{\pi}{4}\right)\right).$$

(d) (i) Show that
$$\tan^{-1}(n+1) - \tan^{-1}(n-1) = \tan^{-1}\left(\frac{2}{n^2}\right)$$
 for $n \ge 1$. 2

(ii) Hence, or otherwise, show that:

$$\sum_{r=1}^{n} \tan^{-1}\left(\frac{2}{r^2}\right) = \tan^{-1}\left(\frac{2n+1}{1-n-n^2}\right) - \frac{\pi}{4}.$$

End of Paper

2

2

^		١		
		c		
	٦			

BLANK PAGE

Ext Trial 2023 Solutions Multiple choice $f(x) = 5x - 3 \quad Dom : x \neq 0, Range y \neq -3$ $\therefore f^{-1}(x) \quad Domain : x \neq -3, Range y \neq 0$ 1. f(x)--- (A tand + tan Is 1 - tan D tan Is 2. tan (0+ "3) = $= \frac{1}{3} + \sqrt{3} = \frac{(1+3\sqrt{3})^{3}}{(3-\sqrt{3})^{3}}$ y= 65.2-1(32) 3. ____``. (8) 4. TZ = 250 1=50 $\dot{\chi} = 50$ By inspection, only (3.5, -2.5) satisfies the DE i. (D xy= 2-1 6. 4= X 11 x

 $y' = p e^{px}$ $y'' = p^2 e^{px}$ ie $p^2 e^{px} - p e^{px} - 12 e^{px} = 0$ $e^{px} (p^2 - p - 12) = 0$ $e^{px} (p - 4) (p + 3) = 0$ $5\beta's + 5\beta'_1 + 5C'_s + 5D'_s + 5E'_s + 1 = 26$ 8. B. B_B -> 3! ways to arrange the group of boys. 9. i.e = B1 = B2=B3= 4! Ways to arrange the girld. 3! x 4! 10. $\pi \int cos^{-1} x dx = \frac{1}{2} \cdot 2\pi \quad \therefore \quad (c)$

Question 11 (a) $P(x) = 8x^4 - 38x^3 + 9x^2 + ax + 6$ $P'(x) = 32x^3 - 114x^2 + 18x + a$ now P(3) = 648 - 1026 + 81 + 3a + b = 0i.e. 3a + b = 297and P(3) = 864 - 1026 + 54 + 9 = 0a = 108 3(108) + b = 297b = -27 $(b) \int \frac{\sqrt{2^2 - x^2}}{\sqrt{2^2 - x^2}} dx = \int \frac{\sqrt{x}}{\sqrt{x}} \int \frac{\sqrt{x}}{\sqrt{x}} dx = \int \frac{\sqrt{x}}{\sqrt{x}} dx = \int \frac{\sqrt{x}}{\sqrt{x}} dx =$ = Sid 3 - Sih" (J2) = 1/3 - 1/4 = 1/2 $(c) (2x-p)^{q} = \sum_{k=1}^{q} {\binom{q}{k}} {\binom{2x}{k}} {\binom{q}{-k}} {\binom{$ term in $x^6 = \binom{9}{6} (2x)^6 (-p)^3$ $i = -672000 = -84.64.5^3$ $p^3 = 125$ p = 5

de 253 sin x + 2 corx = R sin x cosx + R sin x corx $\frac{R\cos\alpha}{R\sin\alpha} = 2\sqrt{3}$ $R^{2}\left(\cos^{2}\alpha + sch^{2}\alpha\right) = (4\times3) + 4$ $\therefore R = 4$ (R > 0) $\frac{R_{Sinx}}{R_{LOSX}} = \frac{2}{2\sqrt{3}} = \tan \alpha$ i.e $\tan \alpha = \frac{1}{5}$ $\therefore \alpha = \frac{1}{5} \left(0 < \alpha < \frac{1}{5} \right)$ i.e 253 sinx + 2 cosx = 4 six (x+ T6) (ii) R(2J3 cosx -2sinx) dx = $\left[253 \sin x + 2\cos x\right]^k$ = 2 ie 25 sink + 2 cosk - (253 sind + 2 coso) = 2 253 silk + 2 cosk -2 = 2 i.e 253 sink + 2 cosk = 4 $\frac{1}{4} \operatorname{sch}\left(k + \frac{1}{6}\right)$ = 4 Sin (k+15 = TE, 5TL ... = 7/2 , C , k I solution only $0 \le k \le 2\pi$

Question 12. $\overline{J} = \int \frac{\cos^2(\ln x)}{x} dx$ $u = \ln x$ $du = \frac{1}{x} dx$ (a) $\therefore I = \int cos^2 (lnx) \frac{dx}{x}$ = Cos²udu = 2 1 + cos 2 u du $=\frac{1}{2}\left[u+\frac{1}{2} \operatorname{Sih} 2u \right]$ $: I = \frac{1}{2} \left[\ln x + \frac{1}{2} \operatorname{Sin} \left(2 \ln x \right) \right] + C$ (b)(i) v = 5i + 12; 5 $U_{\text{bing Pythagoras'}}, |v| = 13 \text{ m/p } 12 / 13$ (ii) From the diagram, $\tan x = \frac{5}{12}$.: x = 22.61... 120/130 . Rylie's bearing is 022.6° and he travels 130m. (ill) using the triangle: 12 $5ih Q = \frac{5}{12}$ i.e Rylie should use a beardy of 360-24.62 = 335°

 $12(c)(i) LHS = \frac{1}{(n+i)!} - \frac{n+i}{(n+2)!}$ $= \frac{(n+2) - (n+1)}{(n+2)!}$ = $\frac{1}{(n+2)!}$ = RHS. ii) Prove $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!} \quad \text{for } n \ge 1$ $\frac{t}{LHS} = \frac{1}{(1+1)!} = \frac{1}{2!} \qquad RHS = 1 - \frac{1}{(1+1)!} = \frac{1}{2!} \qquad = \frac{1}{2!} = LHS.$ Test $f_{ssume true for n=1}$ $f_{ssume true for n=k, i.e. assume:$ $\frac{1}{2! + \frac{2}{3!} + \cdots + \frac{b}{(k+1)!} = (-\frac{1}{(k+1)!}$ Now show frue for n=k+1, ie show? $\frac{1}{2!} + \frac{3}{3!} + \frac{k}{(k+1)!} + \frac{k+1}{(k+2)!} = 1 - \frac{1}{(k+2)!}$ LHS = $1 - \frac{1}{(k+1)!} + \frac{k+1}{(k+2)!}$ using the assumption $= 1 - (\frac{1}{(k+i)!} - \frac{k+i}{(k+2)!})$ = 1- (b+2)! using part (i) = RHS.

 $x^{3} + 4x^{2} - 5x + 3 = 0$ (d) Now xB + xg + Bf $= \frac{x}{x} \frac{x}{p} \frac{x}{x} + \frac{x}{x} \frac{x}{p} \frac{x}{x} + \frac{x}{x} \frac{x}{p} \frac{x}{p$ = x + B + 8 × P8 -ba -d 11 -4/-3 11 = 4/3

Question 13 a (i) v=180/ initial velocity components: $\dot{x}_{0} = 180 \cos 60$ $\dot{y}_{0} = 180 \sin 60$ = 90 m/s = $90 \sqrt{3} m/s$. vertical motion. horizontal motion : $\frac{\ddot{x}=0}{\dot{x}=\int 0 dt}$ $\frac{y^2}{y^2} = -10$ $\frac{y^2}{y^2} = \int -10 dt$ = -10t + C= Cat t=0, $\dot{x} = 90$ $\therefore x = \int_{0}^{t} 90 dt$ at t=0, y = 90J3 $\therefore y = -10t + 90J3$ $= \left[90t \right]^{2}$ - y= -10t + 9053 dt $= 90t^{\circ} - 0$ $\mathcal{K} = 90t$ $= -5t^{2} + 905t + C$ at t=0, y=0, -: C=0 $ie y = -5t^2 + 905t$ $s(t) = 90ti + (9053t - 5t^2);$ ii) Maximum height occurs when $\dot{y} = 0$ i.e. when 90J3 - 10t = 09J3 - t = 0Sub t = 953 into y: $y = -5(953)^2 + 9053(953)$ = 1215 M.t = 953 sec iii) x= 270 = 90t $\begin{array}{r} z = 70 - 100 \\ z = -5(3)^2 + 90\sqrt{3}(3) \\ z = (-45 + 270\sqrt{3}) \\ \end{array}$

 $\overrightarrow{BA} = \begin{pmatrix} 2 \\ -4 \end{pmatrix} - \begin{pmatrix} -4 \\ 7 \end{pmatrix} = \begin{pmatrix} 6 \\ -11 \end{pmatrix} \therefore \begin{vmatrix} \overrightarrow{BA} \end{vmatrix} = \sqrt{6^2 + 11^2} = \sqrt{157}$ 13(6) $\overrightarrow{DC} = \begin{pmatrix} -b \\ -7 \end{pmatrix} - \begin{pmatrix} 12 \\ 10 \end{pmatrix} = \begin{pmatrix} -18 \\ -17 \end{pmatrix} \cdot \cdot |\overrightarrow{DC}| = \sqrt{13^2 + 17^2} = \sqrt{613}$ $\overrightarrow{BA} \cdot \overrightarrow{DC} = \begin{pmatrix} b \\ -11 \end{pmatrix} \cdot \begin{pmatrix} -18 \\ -17 \end{pmatrix}$ $= 6 \times (-18) + (-11) \cdot (-17)$ = 79 and BA·DE = |BA × DE cosO ie 79 = J157 - J613 COSO $\therefore Cos Q = 79$ $\int \sqrt{157} \cdot \sqrt{613}$ 0 = 75.247 i.e D = 75° (to rearest degree).

13(c) (i) LHS = p + 1-p $= \frac{I-P + P}{P(I-P)} = RHS.$ (ii) dP = 2P(I-P) Separate variables: $\int \frac{dP}{P(1-P)} = 2 \int \frac{dt}{dt}$ 5.1 Jusing $\int parf(i)$ 0.1 $\int_{P}^{P} \frac{1}{1-p} dP = 2 \left[\frac{1}{2} \right]_{0}^{t}$ $\int \ln P - \ln \left(\left(l - P \right) \right)^{P} = 2t - 0$ InP - In (I-P) - (In (0.1) - In (0.9) = 2t $ln \frac{1}{1-p} + ln \frac{q}{1} = 2t$ $2t = \ln \frac{qP}{1-P}$ $e^{2t} = \frac{qP}{1-P}$ i.e $(1-P)e^{2t} = 9P$ $e^{2t} = 9P + Pe^{2t}$ $= P(9 + e^{2t})$ $\therefore P = e^{2t} + e^{2t}$ $e^{-2t} = \frac{1}{9te^{2t}}$ (iii) when P= 1/2 $\frac{1}{2} = \frac{1}{9e^{-2t}+1}$ $\frac{1}{2} = 9e^{-2t}+1$ $\frac{1}{e^{-2t}} = \frac{1}{9}$ $\frac{1}{e^{-2t}} = \frac{1}{9}$ $\frac{1}{e^{-2t}} = \frac{1}{9}$ $\frac{1}{e^{-2t}} = \frac{1}{2} \ln 9$

Question 14 $size = \frac{x}{f}$, $cos Q = \frac{y-1}{f}$ (0) \therefore six $^{2}O + \cos^{2}O =$ $i.e = \frac{3}{2} + \frac{(y-1)^2}{2} = 1$ alternatively $x^2 + (y-1)^2 = 25$ $\begin{array}{cccc} y = \sqrt{m-3x} & y = \sqrt{m-3x} \\ y = \sqrt{m-3x} & y^2 = m-3x \\ x = m-y^2 \\ m & 3 \end{array}$ (6) $\therefore x^2 = m^2 - 2my^2 + y^4$ typical slice rotated will have $V = TT x^2 Sy$ $V = T \int x^2 dy$ $= \frac{T_{i}}{q} \int \frac{J_{m}}{m^{2} - 2my^{2} + y^{4} dy}$ $= \frac{1}{9} \left[\frac{m^2y - 2my^3}{3} + \frac{y^2}{5} \right] \frac{5}{7}$ $= \frac{T}{q} \left[\frac{m^{2.5} - 2m^{2.5} + 1m^{2.5} - 0}{3} \right]$ i.e $\frac{5000\pi}{27} = \frac{\pi}{9} \left(\frac{8}{15} \text{ m}^{\frac{5}{2}} \right)$ $m^{52} = \frac{5000}{27} - \frac{9.15}{8}$ M5/2 = 3125 -: M = 25

 $(\bigcirc)(i) \quad \dot{\chi} = dx = e^{\chi} + e^{-\chi} = \frac{e^{\chi} + i}{e^{\chi}} = e^{\chi} + \frac{i}{e^{\chi}} = \frac{e^{\chi} + i}{e^{\chi}}$ dt = e $\therefore \int_{a}^{t} dt = \int_{e^{2x} \neq l}^{x} \frac{e^{x}}{e^{2x}} dx$ (ii) Let $u = e^{x}$ $du = e^{x}dx$ when x = 0, u = 1 x = x, $u = e^{x}$ $\therefore t = \int_{\frac{du}{u^2+1}}^{e^{\chi}}$ = [tan u]ex = $\tan^{-1}e^{x} - \tan^{-1}l$ $\therefore t = tan^{-1}e^{\chi} - \overline{1}\overline{4}$ $\left(t+\frac{\pi}{4}\right) = tan^{-1}e^{x}$ $e^{x} = tan\left(t + \frac{\pi}{4}\right)$

_

_

-

_

_

_

$$\frac{2}{1+4an^{-1}(\frac{2}{4r}) = 4an^{-1}(\frac{2ut_{1}}{1-n^{-}n^{+}}) - \frac{\pi}{4}}{5}$$

$$\frac{2}{5}tan^{-1}(\frac{2}{4r}) = \frac{1}{1+1}$$

$$\frac{2}{1+5} = \frac{2}{7}tan^{-1}(\frac{2}{7}) = \frac{\pi}{4}$$

$$= 4an^{-1}(2)$$

$$\frac{1}{1+5} = \frac{1}{7}tan^{-1}(-1)^{-1} = \frac{1}{7}$$

$$= 4an^{-1}(-3) - \frac{\pi}{4}.$$

$$ncw = 4au(4an^{-1}(-3) - \frac{\pi}{4}) = \frac{4au(4an^{-1}(-3)) - 4au}{1+4au(4an^{-1}(-3)) - 4au}$$

$$\frac{-3}{1+2au} = \frac{-3}{1-1}$$

$$\frac{-3}{1-1}$$

$$\frac{-3}{1-1}$$

$$\frac{-3}{1-1}$$

$$\frac{-3}{1-1}$$

$$\frac{-3}{1-1}$$

$$\frac{-3}{1-1}$$

$$\frac{-3}{1-1}$$

$$\frac{-3}{1-1}$$

$$\frac{-3}{1-1}$$

$$\frac{-3}{$$

So $\tan(2HS) = \tan(\tan^{-1}(\frac{2k+1}{1-k-k^2}) + \tan(\tan^{-1}(\frac{2}{(k+1)^2}))$ $1 - \tan(\tan^{-1}(\frac{2k+1}{1-k-k^2})) \tan(\tan^{-1}(\frac{2}{(k+n^2)}))$ $\frac{2k41}{1-10-102} + \frac{2}{(1+1)^2}$ $1 - \frac{2kH}{1-k-k^2} \cdot \frac{2}{(k+1)^2}$ $-(2k+1)(k+1)^{2}+2(1-k-k^{2})$ (1-le-le2)(K+1)2 - 2(2K+1) = 2k3+4k2+2k+1k2+2k+1+2-2k-2k2 624218+1-182-2182-K-184-2183-182-416-2 $= 2k^3 + 3k^2 + 2k + 3$ -K4-3k3-2k2-3K-1 $2 |k^3 + 3k^2 + 2k+3 = (2k+3)k^2 + (2k+3)$ $= (2k+3)(k^2+1)$ an -(K2+1)(K2+3K+1) $= (2(k+3)(k^2+1))$ $k^{2} + 3k + i$ $k^{2} + 1$ $k^{4} + 3k^{3} + 2k^{2} + 3k + i$ \$ $=\frac{2k+3}{-k^2-3k-1}$ $k^4 + k^2$ $LHS = tan^{-1} - \frac{2k+3}{-k^2-3k-1}$ 3k3 +1k2 +3k 3k3 +3k = RHS k2 +1 12 +1 Step 4: So proof holds by the inductive process